Journals

2021

WeChatWorkScreenshot_73b03741-ae50-4e57-add4-8d3671b5055dJun Zhang*, Zhiyuan Hua*, Kezhou Yan, Kuan Tian, Jianhua Yao, Eryun Liu, Mingxia Liu, and Xiao Han. Joint fully convolutional and graph convolutional networks for weakly-supervised segmentation of pathology images. Medical image analysis 73 (2021): 102183. (*Co-first Author

TCYB2019_Jun

Jun Zhang, Mingxia Liu, Ke Lu, Yue Gao. Group-Wise Learning for Aurora Image Classification with Multiple Representations. IEEE Transactions on Cybernetics, 51 (8), 4112 – 4124, 2021.

Screen Shot 2021-09-01 at 8.18.14 PMMeng Yue*, Jun Zhang*, Xinran Wang, Kezhou Yan, Lijing Cai, Kuan Tian, Shuyao Niu et al. “Can AI-assisted microscope facilitate breast HER2 interpretation? A multi-institutional ring study.” Virchows Archiv (2021): 1-7.(*Co-first Author)

Screen Shot 2021-09-01 at 7.33.34 PMLijing Cai, Kezhou Yan, Hong Bu, Meng Yue, Pei Dong, Xinran Wang, Lina Li, Kuan Tian, Haochen Shen, Jun Zhang, Junzhou Huang, Xiao Han, Jianhua Yao, Yueping Liu. Improving Ki67 Assessment Concordance with AI‐Empowered Microscope: A Multi‐institutional Ring Study. Histopathology (2021).

2020

0000

Jun Zhang, Kuan Tian, Pei Dong, Haocheng Shen, Kezhou Yan, Jianhua Yao, Junzhou Huang, Xiao Han. Microscope Based HER2 Scoring System. arXiv preprint arXiv:2009.06816, 2020.

newJDL_Jun_MIA2019

Jun Zhang*, Mingxia Liu*, Li Wang, Si Chen, et al. Context-Guided Fully Convolutional Networks for Joint Craniomaxillofacial Bone Segmentation and Landmark DigitizationMedical Image Analysis, 60:101621, 2020. (*Co-first Author)

TPAMI2019_Lian

Chunfeng Lian, Mingxia Liu, Jun Zhang, Dinggang Shen. Hierarchical Fully Convolutional Network for Joint Atrophy Localization and Alzheimer’s Disease Diagnosis using Structural MRIIEEE Transactions on Pattern Analysis and Machine Intelligence, 42(4):880-893, 2020.

企业微信截图_16089698767616

Rongbo Shen, Ke Zhou, Kezhou Yan,  Kuan Tian, Jun Zhang. Multicontext multitask learning networks for mass detection in mammogram. Medical  Physics,47(4):1566-1578, 2020.

JIM2019_Eryun.png

Eryun Liu, Kangping Chen, Zhiyu Xiang, Jun Zhang. Conductive particle detection via deep learning for ACF bonding in TFT-LCD manufacturing. Journal of Intelligent Manufacturing,31:1037-1049, 2020.

2019

TMI2019_jun.png

Jun Zhang, Ashirbani Saha, Zhe Zhu, Maciej A. Mazurowski. Hierarchical convolutional neural networks for segmentation of breast tumors in MRI with application to radiogenomicsIEEE Transactions on Medical Imaging, 38(2): 435-447, 2019.

TCYB2019_MX

Mingxia Liu*, Jun Zhang*, Chunfeng Lian, Dinggang Shen. “Weakly-Supervised Deep Learning for Brain Disease Prognosis using MRI and Incomplete Clinical Scores”. IEEE Transactions on Cybernetics, 50 (7), 3381-3392, 2019. (*Co-first Author, Accepted)

TBME2019_MX

Mingxia Liu*, Jun Zhang*, Ehsan Adeli, Dinggang Shen. Joint Classification and Regression via Deep Multi-Task Multi-Channel Learning for Alzheimer’s Disease DiagnosisIEEE Transactions on Biomedical Engineering, 66 (5): 1195-1206, 2019. (*Co-first Author)

0000

Liang Wang, Haochen Shen, Jun Zhang, Yanchun Zhu, Cheng Jiang. A Clifford Analytic Signal-Based Breast Lesion Segmentation Method for 4D Spatial-Temporal DCE-MRI Sequences. IEEE Access,8:3901-3910, 2019.

Arxiv2017_Zhe

Z Zhu, E Albadawy, A Saha, Jun Zhang, MR Harowicz, MA Mazurowski. Deep Learning for Identifying Radiogenomic Associations in Breast Cancer, Computers in biology and medicine, 109:85-90,2019.

Arxiv20172_Zhe.jpg

Z Zhu, M Harowicz, Jun Zhang, A Saha, LJ Grimm, ES Hwang. Deep Learning Analysis of Breast MRIs for Prediction of Occult Invasive Disease in Ductal Carcinoma in Situ, Computers in biology and medicine, 115:103498,2019.

2018

Arxiv2019-Jun

Jun Zhang, Ashirbani Saha, Brian J. Soher, Maciej A. Mazurowski, Automatic deep learning-based normalization of breast dynamic contrast-enhanced magnetic resonance images, arXiv preprint arXiv:1807.02152, 2018.

TGRS2019_Niu

Chuang Niu, Jun Zhang, Qian Wang, Jimin Liang. Weakly Supervised Learning for Joint Key Local Structure Localization and Classification of Aurora Image, IEEE Transactions on Geoscience and Remote Sensing, 56 (12):7133-7146 2018. 

JBHI2019_MX.png

Mingxia Liu*, Jun Zhang*, Dong Nie, Pew-Thian Yap, Dinggang Shen. Anatomical Landmark based Deep Feature Representation for MR Images in Brain Disease DiagnosisIEEE Journal of Biomedical and Health Informatics, 22(5): 1476-1485, 2018. (*Co-first Author)

MIA2019_MX

Mingxia Liu*, Jun Zhang*, Ehsan Adeli, Dinggang Shen. Landmark-based Deep Multi-Instance Learning for Brain Disease DiagnosisMedical Image Analysis, 43: 157-168, 2018.(*Co-first Author)

MTAP2018_Cao.png

Liang Cao, Long Li, Jifeng Zheng, Xin Fan, Feng Yin, Hui Shen, Jun Zhang#. Multi-task Neural Networks for Joint Hippocampus Segmentation and Clinical Score RegressionMultimedia Tools and Applications, 1-18, 2018. (#Correspoinding Author)

MIA2018_Lian.png

Chunfeng Lian*, Jun Zhang*, Mingxia Liu, Xiaoping Zong, Weili Lin, Dinggang Shen. Multi-Channel Multi-Scale Fully Convolutional Network for 3D Perivascular Spaces Segmentation in 7T MR ImagesMedical Image Analysis, 46: 106-117, 2018. (*Co-first Author)

TBM2018_Cao.png

Xiaohuan Cao, Jianhua Yang, Jun Zhang, Qian Wang, Pew-Thian Yap, Dinggang Shen. Deformable Image Registration Using Cue-aware Deep Regression NetworkIEEE Transaction on Biomedical Engineering, 65(9):1900-1911. (Covered Article)

2017

TIp2017_Jun.png

Jun Zhang*, Mingxia Liu*, Dinggang Shen. Detecting Anatomical Landmarks from Limited Medical Imaging Data using Two-Stage Task-Oriented Deep Neural NetworksIEEE Trans. on Image Processing, 26(10): 4753-4764, 2017. (*Co-first Author)

JBHI2017_Jun.png

Jun Zhang, Mingxia Liu, Le An, Yaozong Gao, Dinggang Shen. Alzheimer’s Disease Diagnosis using Landmark-based Features from Longitudinal Structural MR ImagesIEEE Journal of Biomedical and Health Informatics, 21(3): 1607-1616, 2017

TBME2017_Jun.png

Jun Zhang, Yaozong Gao, Sang Hyun Park, Xiaopeng Zong, Weili Lin, Dinggang Shen. “Structured Learning for 3D Perivascular Spaces Segmentation Using Vascular Features.” IEEE Trans. on Biomedical Engineering, 64(12): 2803-2812, 2017. (Featured Article)

Neurocomputing2017_Jun.png

Jun Zhang, Qian Wang, Zejun Hu, Mingxia Liu.  Auroral Event Representation based on the N-ary Fusion of Multiple Oriented EnergiesNeurocomputing 253: 42-48, 2017.

MTAP2017_Jun.png

Jun Zhang, Jimin Liang, Haihong Hu. Multi-view texture classification using hierarchical synthetic imagesMultimedia Tools and Applications 76(16), 17511-17523, 2017

MIA2017_MX.png

Mingxia Liu, Jun Zhang, Pew-Thian Yap, Dinggang Shen. View-Aligned Hypergraph Learning for Alzheimer’s Disease Diagnosis with Incomplete Multi-modality DataMedical Image Analysis, 36(2): 123-134, 2017.

MI2017.jpg

Zhenzhen, Xu, Bo Tao, Yu Li, Jun Zhang, Xiaochao Qu, Feng Cao, Jimin Liang. 3D Fusion Framework for Infarction and Angiogenesis Analysis in a Myocardial Infarct Minipig ModelMolecular Imaging 16: 1536012117708735, 2017.

SR2017_Hou.jpg

Yingkun Hou, Sang Hyun Park, Qian Wang, Jun Zhang, Xiaopeng Zong, Weili Lin, and Dinggang Shen. Enhancement of Perivascular Spaces in 7T MR Image using Haar Transform of Non-local Cubes and Block-matching FilteringScientific Reports 7, 2017.

SR2017_Le.png

Le An, Ehsan Adeli, Mingxia Liu, Jun Zhang, Seong-Whan Lee, Dinggang Shen. A Hierarchical Feature and Sample Selection Framework and Its Application for Alzheimer’s Disease DiagnosisScientific Reports 7, 2017.

Neurocomputing2017_MX.jpg

Liu, Mingxia, Jun Zhang#, Xiaochun Guo, and Liujuan Cao. Hypergraph Regularized Sparse Feature LearningNeurocomputing. 237: 185-192, 2017. (#Correspoinding Author)

2016

TMI2016_Jun.jpg

Jun Zhang, Yue Gao, Yaozong Gao, Munsell Brent, and Dinggang Shen. Detecting Anatomical Landmarks for Fast Alzheimer’s Disease DiagnosisIEEE Trans. on Medical Imaging, 35(12): 2524-2533, 2016.

TBME2016_Jun.jpg

Jun Zhang, Yaozong Gao, Li Wang, Zhen Tang, James J. Xia, and Dinggang Shen. Automatic Craniomaxillofacial Landmark Digitization via Segmentation-guided Partially-joint Regression Forest Model and Multi-scale Statistical Features.  IEEE Trans. on Biomedical Engineering, 63(9): 1820-1829, 2016.

2015

PRL2015_Jun.jpg

Jun Zhang, Jimin Liang, Chunhui Zhang, and Heng Zhao. Scale Invariant Texture Representation based on Frequency Decomposition and Gradient OrientationPattern Recognition Letters, 51: 57-62, 2015.

PRL2015_Zhang.jpg

Chunhui Zhang, Jimin Liang, Jun Zhang, and Heng Zhao. A New Shape Prior Model with Rotation InvariancePattern Recognition Letters, 54: 82-88, 2015.

2014

OSA2015_Zhang.jpg

Jun Zhang, Duofang Chen, Jimin Liang, Huadan Xue, Jing Lei, Qin Wang, Dongmei Chen, Ming Meng, Zhengyu Jin, and Jie Tian. Incorporating MRI Structural Information into Bioluminescence Tomography: System, Heterogeneous Reconstruction and In Vivo QuantificationBiomedical Optics Express, 5(6): 1861, 2014.

SR2014_Chunhui.jpg

Chunhui Zhang, Jun Zhang, Heng Zhao, and Jimin Liang. A Part-based Probabilistic Model for Object Detection with OcclusionPloS One,  9(1): e84624, 2014.

2013

TIP2013_Jun.jpg

Jun Zhang, Jimin Liang, and Heng Zhao. Local Energy Pattern for Texture Classification using Self-adaptive Quantization ThresholdsIEEE Trans. on Image Processing,  22(1): 31-42, 2013.

CVIU2013_Jun.jpg

Jun Zhang, Heng Zhao, and Jimin Liang. Continuous Rotation Invariant Local Descriptors for Texton Dictionary-based Texture Classification. Computer Vision and Image Understanding, 117(1): 56-75, 2013.